Item – Thèses Canada

Numéro d'OCLC
Lien(s) vers le texte intégral
Exemplaire de BAC
Exemplaire de BAC
Lee, Henry,1968-
The environmental impact of the Virgo Cluster on the evolution of dwarf irregular galaxies.
Ph. D. -- York University, 2001
Ottawa : National Library of Canada = Bibliothèque nationale du Canada, [2003]
4 microfiches
Includes bibliographical references.
Dwarf galaxies are the greatest contributor to the total number of galaxies and most are believed to be systems consisting of matter in a near-primordial state. Containing H I gas and H II regions, dwarf irregular galaxies (dIs) can be used as test bodies to evaluate the impact of the environment on their evolution. Oxygen abundances relative to hydrogen within H II regions are a measure of how far the conversion of gas in the interstellar medium into stars has proceeded as a whole, as abundances do not vary significantly with galactocentric radius in dIs. Measurements of the [O III][lambda]4363 emission line from H II region spectroscopy provide accurate probes of the electron temperature from which oxygen abundances are directly computed. The impact of the Virgo Cluster environment is investigated by comparing the properties of a set of Virgo dIs with those of a set of dIs in the field. To ensure accurate measures of luminosity and abundance, dIs in the field are chosen to have distance determinations from well-calibrated techniques and oxygen abundances derived from [O III][lambda]4363 measurements. Spectroscopic data are obtained for H II regions in 11 dIs distributed in the central and outer regions of the Virgo Cluster. There is no systematic difference in oxygen abundance between field dIs and Virgo dIs at a given luminosity, showing that there is no detectable difference in their stellar populations. Oxygen abundances for field dIs are well correlated with the gas fraction in a way which shows definitively that evolution has been isolated, i.e., consistent with the "closed-box" model of chemical evolution. For the gas-poor dI UGC 7636 (VCC 1249), the oxygen abundance of a newly discovered intergalactic H II region is combined with the optical luminosity of the dI and the gas mass of the adjacent H I cloud (STET) to show that STET must have once been the interstellar medium of the dI. Tidal interactions of the dI with the elliptical NGC 4472 combined with ram-pressure stripping by the intracluster medium (ICM) best explain the observed properties of the detached cloud and the dI. A "staged" model is described to examine the chemical evolution of a gas-poor dI in the Virgo Cluster. Motivated by the observations, the model is characterized by three phases: isolated evolution, then sudden stripping which removes most of the gas, followed by a second stage of isolated evolution for the residual gas. The time since a typical stripping event is found to be approximately 1 Gyr or less. The GDIs for Virgo dIs correlate roughly with values of the projected X-ray surface brightness of the intracluster gas at the positions of the dIs. Thus, ram-pressure stripping best explains the observed gas-poor dIs in the Virgo sample. Together with the lack of significant fading, these observations suggest that dIs have recently encountered the ICM for the first time. A faded remnant of a gas-poor dI in Virgo will resemble a bright dE/dSph-like object like those presently seen in the cluster core. (Abstract shortened by UMI.)